
In token-based algorithms [14–16, 20, 22, 25, 26], only the
site holding the token can execute the CS and make the
final decision on the next site to enter the CS. In non-
token-based algorithms [3, 12, 13, 19, 21, 23], a requesting
site can execute the CS only after it has received permission
from each member of a subset of sites in the system, and
every site receiving a CS request message participates in
making the final decision. There is an orthogonal classifica-
tion of mutual exclusion algorithms [24]: static and dy-
namic. A mutual exclusion algirithm is static if its actions
do not depend upon the current system state (or history);
otherwise, it is dynamic.

In token-based algorithms, a unique token is shared
among the sites, and the possession of the token gives a
site the authority to execute the CS. Singular existance of
the token implies the existence of mutual exclusion in a
distributed system. Depending on whether or not a logical
configuration is imposed on sites, the token-based algo-
rithms can be further classified into the following two ap-
proaches [24]: broadcast-based and logical-structure-based.

In broadcast-based algorithms, no structure is imposed
on sites and a site sends token request messages to other
sites in parallel. Broadcast-based algorithms are divided
into two classes: static and dynamic. Static algorithms are
memoryless because they do not remember the history of
CS executions. In these algorithms [15, 20, 25], a requesting
site sends token requests to all other sites. Dynamic algo-
rithms [22], on the other hand, remember a recent history
of the token locations and send token request messages
only to a dynamically selected sites which are likely to
have the token.

In logical-structure-based algorithms, sites are woven
into a logical configuration. These algorithms can be static
or dynamic. In static algorithms, the logical structure re-
mains unchanged and only the direction of edges changes.
For example, in a tree-based algorithm [16], sites are usu-
ally organized in a special configuration (e.g., tree). Re-
quests sequentially propagate through the paths between
the requesting site and the site holding the token, and so
does the token. In dynamic algorithms [14, 26], a dynamic
logical tree is maintained such that the root is always the
site which will hold the token in the near future (i.e., the
root is the last site to get the token among the current
requesting sites) when no message is in transit. The token
is directly sent to the next requesting site to execute the
CS, but a request is sequentially forwarded along a virtual

JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING 33, 107–121 (1996)
ARTICLE NO. 0030

A Simulation Study on Distributed Mutual Exclusion1

YE-IN CHANG2

Department of Applied Mathematics, National Sun Yat-Sen University, Kaohsiung, Taiwan, Republic of China

0743-7315/96 $18.00
Copyright 1996 by Academic Press, Inc.

All rights of reproduction in any form reserved.

107

In the problem of mutual exclusion, concurrent access to a
shared resource using a structural program abstraction called
a critical section (CS) must be synchronized such that at any
time only one process can enter the CS. In a distributed system,
due to the lack of both a shared memory and a global clock, and
due to unpredictable message delay, the design of a distributed
mutual exclusion algorithm that is free from deadlock and
starvation is much more complex than that in a centralized
system. Based on different assumptions about communication
topologies and a widely varying amount of information main-
tained by each site about other sites, several distributed mutual
exclusion algorithms have been proposed. In this paper, we
suvrey and analyze several well-known distributed mutual ex-
clusion algorithms according to their related characteristics.
We also compare the performance of these algorithms by a
simulation study. Finally, we present a comparative analysis
of these algorithms. 1996 Academic Press, Inc.

1. INTRODUCTION

The mutual exclusion problem was originally considered
in centralized systems for the synchronization of exclusive
access to the shared resource. In the problem of mutual
exclusion, concurrent access to a shared resource or the
critical section (CS) must be synchronized such that at any
time only one process can access the CS.

A distributed system consists of a collection of geograph-
ically dispersed autonomous sites connected by a commu-
nication network. The sites have no shared memory, no
global clock, and communicate with one another by passing
messages. Message propagation delay is finite but unpre-
dictable. In a distributed system, due to the lack of both
in shared memory and a global clock, and due to unpredict-
able message delay, the design of a distributed mutual
exclusion algorithm that is free from deadlock and starva-
tion is much more complex than that in a centralized
system.

Over the past decade, many algorithms have been pro-
posed to achieve mutual exclusion in distributed systems.
These algorithm can be divided into two classes: token-
based and non-taken-based [24] (or permission-based [17]).

1 This research was supported by National Science Council of the Re-
public of China, NSC-81-0408-E-110-508.

2 E-mail: changyi@math.nsysu.edu.tw.

[19] is static because the contents of the request sets do
not change as the algorithm executes. Carvalho–Roucairol
proposed an improved variation of the Ricart–Agrawala
algorithm where a site remembers the recent history of
the CS executions and minimizes the number of messages
exchanged [3]. (This was the informal start of dynamic
Ricart–Agrawala-type algorithms.) Singhal for the first
time has formally proposed a dynamic Ricart–Agrawala-
type algorithm, proved its correctness, and analyzed its
performance characteristics [23].

In Maekawa-type algorithms, on the contrary, a site can
grant permission only to one site at a time [13, 21]. A site
grants permission to a requesting site only if it has not
currently granted permission to another site. (That is, site
X is locked by site Y if site X grants permission to site Y.)
Otherwise, it delays granting permission until the currently
granted permission has been released. The request set of
a site X contains the identifiers of the sites which are
exclusively locked by site X when requesting the CS. This
approach must ensure ; X, Y, RX > RY ? B such that
two conflicting requests can be detected by a site Z (Z [
RX > RY).

In general, there is a trade-off between synchronization
delay and message complexity of distributed mutual exclu-
sion algorithms. No single mutual exclusion algorithm can
optimize both synchronization delay and the message com-
plexity. The concept of hybrid mutual exclusion algo-
rithms has been purposed to simultaneously minimize both
synchronization delay and message complexity [4]. Sites
are divided into groups, and different algorithms are used

path to the root. Helary et al. have proposed a general
scheme for token- and tree-based distributed mutual exclu-
sion algorithms [11], which covers those algorithms [14,
16, 26] based on the static and dynamic logical-structure-
based approaches.

In non-token-based algorithms, a request set at a site X
(denoted as Rx) is used to record the identifiers of the sites
to which site X sends CS request messages when requesting
the CS. A site-invoking mutual exclusion can enter the CS
only after it has received permission from all the sites
whose identifiers are in its request set. To simplify the
design of a non-token-based algorithm, the following two
assumptions are usually made: (1) the network topology
is logically fully connected; (2) between any pair of sites,
messages are delivered in the order in which they are sent.
To ensure that every site resolves conflicting requests in
the same way, a unique timestamp is included in each CS
request message to order the request. Depending on how
a request set is formed, the non-token-based algorithms
can be classified into the following two approaches [24]:
Ricart–Agrawala-type and Mackawa-type.

In Ricart–Agrawala-type algorithm, a site grants permis-
sion to a requesting site immediately if it is not requesting
the CS or its own request has lower priority. Otherwise,
it defers granting permission until its execution of the CS
is over. That is, while granting a permission, a site looks
into only its own conflict. A site can grant permission to
many requesting sites simultaneously. This approach must
ensure Y [Rx , where site Y is executing the CS and site
X is requesting the CS. The Ricart–Agrawala algorithm

108 YE-IN CHANG

FIG. 1. Classification.

to resolve local (intragroup) and global (intergroup) con-
flicts. By carefully controlling the interaction between the
local and the global algorithms, one can minimize both
message traffic and synchronization delay simultaneously.

In this paper, we survey and analyze several well-known
distributed mutual exclusion algorithms according to their
related characteristics as shown in Fig. 1. We also compare
the performance of these algorithms by a simulation study.
Finally, we present a comparative performance analysis of
these algorithms.

The rest of the paper is organized as follows. Section 2
describes the system and the performance models. Sections
3 and 4 discuss non-token-based algorithms based on the
Ricart–Agrawala-type approach and the Mackawa-type ap-
proach, respectively. Section 5 presents an algorithm based
on the hybrid approach. Sections 6, 7, and 8 discuss token-
based algorithms based on the broadcast-based approach,
the static logical-structure-based approach, and the dy-
namic logical-structure-based approach, respectively. Sec-
tion 9 presents a comparative analysis of these algorithms
based on the performance. Section 10 contains conclud-
ing remarks.

2. SYSTEM AND PERFORMANCE MODELS

In this section, we describe the system and the perfor-
mance models.

2.1. The System Model

A distributed system consists of N sites, uniquely num-
bered from 1 to N. Each site contains a process that makes
a request to mutually exclusively access the CS. This re-
quest is communicated to other processes. Message propa-
gation delay is finite but unpredictable. The communica-
tion network is assumed to be reliable (i.e., messages are
neither lost nor duplicated and are transmitted error-free),
and sites do not crash. There is only one CS in the system,
and any process currently in the CS will exit in finite time.
Moreover, a site cannot issue another request until the
current request is granted, and the process itself exits
the CS.

2.2. The Performance Model

The operation of mutual exclusion algorithm is very
complex and is quite difficult to analyze mathematically.
Analytic performance study of mutual exclusion algo-
rithms is intractable due to the rapid growth of the cardinal-
ity of the state space with the number of the sites in the
system. Therefore, we have studied the performance of the
distributed mutual exclusion algorithms using simulation
techniques. The performance model used in this paper is
similar to the one used in [18, 22]. We assume that requests
for CS execution arrive at a site according to the Poisson
distribution with parameter l. Message propagation delay
between any two sites is a constant (T) times a random
number (between 0 and 1) with the uniform distribution.

109DISTRIBUTED MUTUAL EXCLUSION

The time taken by a site to execute the CS is constant (E).
A site processes the requests for the CS one by one, and
there is only one CS in the system. In this simulation study,
the following two performance measures are considered:
(1) message traffic: the average number of messages ex-
changed among the sites per CS execution; (2) time delay:
The average time delay in granting the CS, which is the
period of time between the instant a site involves mutual
exclusion and the instant when the site enters the CS.

Simulation experiments were carried out for a homoge-
neous system of 21 sites (N 5 21) for various values of the
traffic of CS requests (l). (The reason that we choose
N 5 21 is because this number satisfies the required proper-
ties of some special algorithms [4, 13].) Message propaga-
tion delay (T) between the sites was taken as 0.1, and CS
execution time (E) was taken as 0.01. The values of the
parameters chosen here are consistent with those in [18,
22]. Collected performance measures, namely, the number
of messages per CS execution and the delay in granting
the CS, are probabilistic in nature. For these measures, we
collect the values of these variables for 5000 CS executions.
Moreover, the following two cases are specially concerned
in the performance study: (1) light traffic: In this case, most
of the time only one or no request for the CS is present
in the system; (2) heavy traffic: In this case, all the sites
will always have a pending request for the CS.

3. ALGORITHMS BASED ON THE
RICART–AGRAWALA-TYPE APPROACH

In algorithms based on the Ricart–Agrawala-type ap-
proach, a requesting site contains the identifiers of those
sits which are possibly inside the CS. The simplest initializa-
tion of RX at a site X is to place every site identifier to
RX . A timestamp is included in each request to resolve
conflicting requests in a logically fully connected network.
In this section, we first present Lamport’s algorithm [12]
since it is the first distributed mutual exclusion algorithm.
We then present three algorithms based on the Ricart–
Agrawala-type approach [3, 19, 23]. These three algorithms
have successively reduced message traffic in Lamport’s
algorithm by deferring reply messages, reducing the size
of request sets, and minimizing the initial values of request
sets, respectively.

3.1. Lamport’s Algorithm

In Lamport’s mutual exclusion algorithm, every request
message includes a timestamp T. Moreover, every site
maintains a priority queue Q in which requests are ordered
by the timestamps. (Note that this algorithm requires mes-
sages to be delivered in the order they were sent.) When
site X invokes mutual exclusion, it adds its request to QX

and sends a Request(TX , X) message to every site (i.e.,
uRXu 5 N 2 1). When site Y receives the Request message,
it returns a timestamped Reply message and adds site X’s
request to QY . Site X can enter the CS when the following
two conditions are satisfied: (1) site X’s own request is in

the request set is set to RS 5 h1, 2, ..., (S 2 1) Sj, and the
inform set is set to IS 5 hS j, for 1 # S # N.

When site S invokes mutual exclusion, it sends Request
messages to sites whose identifiers are in a dynamically
changing request set RS as opposed to all the sites as in
Ricart and Agrawala’s algorithm [19]. Therefore, the algo-
rithm is dynamic because the request set is dynamically
changed such that the request set records only the identifi-
ers of those sites which are possibly inside the CS.

Upon receiving the Request message, site Y takes differ-
ent actions depending on its current state. (1) If it is not
requesting or its request has a lower priority than site S’s
request, it responds with a Reply message immediately
and updates RY 5 RY < hSj. Moreover, in the latter case,
if site Y has not requested permission from site S, it sends
a Request message to site S. (2) If its request has a higher
priority than site S’s requests, it defers its reply and updates
IY 5 IY < hSj. When site S receives a Reply message from
site Y, it updates RS 5 RS 2 hY j. Site S enters the CS
when RS 5 f. After exiting the CS, site S sends a Reply
message to every site Y whose identifier is in IS , removes
site identifier Y from IS and adds site identifier Y to RS .
As the algorithm executes, RS is dynamically changed; how-
ever, the condition (S [RY or Y [RS) is always satisfied.
The number of the messages exchanged per CS execution
in this algorithm is also between 0 and 2 p (N 2 1), and
the average number of the messages exchanged in light
traffic is (N 2 1).

3.5. A Comparison of Performance

Since Lamport’s algorithm requires more messages than
the other three algorithms, and Carvalho and Roucairol’s
algorithm has applied a similar strategy to reduce message
traffic as Singhal’s algorithm, we only do the simulation
study of Ricart and Agrawala’s algorithm [19] and Singhal’s
algorithm [23]. (Note that the boolean array A used in
Carvalho and Roucairol’s algorithm has the similar func-
tion as the request set R in Singhal’s algorithm.) Figure
2a shows a comparison of message traffic between these
two algorithms [19, 23]. In light traffic (0 # l # 0.3),
Singhal’s algorithm needs about (N 2 1) messages per CS
execution. As the traffic is increased, the number of the
sites possibly requesting the CS is increased in Singhal’s
algorithm. In heavy traffic, both algorithms need 2 p

(N 2 1) messages. Figure 2b shows a comparison of time
delay between these two algorithms. In heavy traffic, Sin-
ghal’s algorithm has longer time delay than Ricart and
Agrawala’s algorithm, since all of the needed Request mes-
sages may not be sent out simultaneously.

4. AN ALGORITHM BASED ON THE
MAEKAWA-TYPE APPROACH

In algorithms based on the Maekawa-type approach, the
request set of a site X contains the identifiers of the sites
which are exclusively locked by site X when requesting

front of Qx ; (2) site X has received a message from every
site with a timestamp larger than (TX , X).

Since Lamport’s algorithm assumes that between any
pair of sites, messages are delivered in the order in which
they are sent, the second condition guarantees that site X
has learned about all the requests that preceded its current
request. Based on the total order defined by the time-
stamps, the first condition will permit one and only one site
(i.e., the site with the smallest timestamp among current
requesting sites) to enter the CS.

To release the resource, site X removes its request from
QX and sends timestamped Release messages to all other
sites. When site Y receives site X’s Release message, it
removes site X’s request from QY . Lamport’s algorithm
requires 3 p (N 2 1) messages per CS execution.

3.2. Ricart and Agrawala’s Algorithm

Ricart and Agrawala’s algorithm [19] reduces the mes-
sage traffic over Lamport’s algorithm [12] by using an im-
plicit Release message strategy. In this algorithm, when site
X wants to enter the CS, it sends a Request mesage to all
the sites. Site X can defer its reply to any other site Y
whose request has a lower priority than site X’s request
until site X finishes execution of the CS. Site X enters the
CS after it has received Reply messages from all the sites.
When site X releases the CS, it sends Reply messages to
all the deferred requests. Therefore, when site Y receives
a Reply message from site X, the Reply message implies
that site X has finished execution of the CS. In this algo-
rithm, RX at each site X contains the identifier of every
site; therefore, this algorithm requires 2 p (N 2 1) messages
per CS execution.

3.3. Carvalho and Roucairol’s Algorithm

Carvalho and Roucairol’s algorithm [3] avoids some un-
necessary Request and Reply messages in Ricart and Agra-
wala’s algorithm [19] by using an implicit no Request mes-
sage strategy. In this algorithm, if site X has not received
a Request message from site Y since site X executed the
CS last time, it implies that site Y has given its implicit
permission to site X. Therefore, site X does not have to
ask for permission from all such sites, and message traffic
is reduced. This is achieved by keeping a boolean array A
that is dynamically updated at each site such that it records
the identifiers of those sites which are not requesting the
CS. The number of the messages exchanged per CS execu-
tion in this algorithm is between 0 and 2 p (N 2 1).

3.4. Singhal’s Dynamic Information Structure Algorithm

Singhal’s dynamic information structure algorithm [23]
reduces message traffic by cleverly initializing the informa-
tion structure and updating it as the algorithm evolves.
The information structure at site S includes a request set
RS (as defined before) and an inform set IS that records
the identifiers of those sites to which Reply messages are
to be sent after the execution of the CS. In this algorithm,

110 YE-IN CHANG

the CS [13]. To ensure that such an algorithm works cor-
rectly, the conditions ; X, Y, RX > RY ? B must be
satisfied such that two conflicting requests can be detected
by a site Z (Z [RX > RY). A centralized control algorithm
[2] is one of the special case of Maekawa-type algorithms
as pointed out in [24]. In this section, we discuss Maekawa’s
algorithm [13].

In Maekawa’s algorithm [13], a site S must exclusively
lock every site whose identifier is in its request set before
site S executes the CS. In this algorithm, the request set
RS of each site S has the following properties (where N 5
K p (K 2 1) 1 1 and K [I1): (1) RS > RY ? B, S ? Y, 1 #
S, Y # N; (2) S [RS , 1 # S # N; (3) uRSu 5 K, 1 # S # N;
(4) Any Y, 1 # Y # N, is contained in K of RS’s, 1 # S # N.

Consequently, every pair of sites has a common site
which mediates conflicts between the pair. When N 5 7
(K 5 3), an example of the request sets is as follows:
R1 5 h1, 2, 3j, R2 5 h2, 4, 6j, R3 5 h3, 5, 6j, R4 5 h1, 4, 5j,
R5 5 h2, 5, 7j, R6 5 h1, 6, 7j, and R7 5 h3, 4, 7j.

When site X invokes mutual exclusion, it sends Request
messages to every site whose identifier is in RX . Upon
receiving a Request message from site S takes actions de-
pending on the following three cases: (1) if site S has not
granted its permission (i.e., a Reply message) to some other
site, site S grants its permission to site X; (2) if site S has
granted its permission to some other site Y and site X’s
request has lower priority than any other request received
at site S, site S sends a Failed message to site X so that
site X can relinquish any received permission; (3) it site S
has granted its permission to some other site Y and site
X’s request has higher priority than all other requests re-
ceived at site S, site S sends an Inquire message to site Y,
provided site S has not sent this message to site Y before.
Moreover, in cases (2) and (3), site S adds site X’s request
to QS . In case (3), site S also adds site X’s request to
another set NextQS to avoid deadlock [5].

Upon receiving an Inquire message from site S, site Y
takes actions depending on the following three cases: (1)

111DISTRIBUTED MUTUAL EXCLUSION

if site Y has received a Failed message, site Y sends a
Relinquish message to yield the permission; (2) if site Y
has received all needed Reply messages, site Y ignores
the Inquire message; (3) otherwise, site Y adds S to an
InquireSite set. Upon receiving a Failed message from site
W, site Y adds W to a FailedFrom set, and sends a Relin-
quish message to every site whose identifier is in the
InquireSite set. After finishing execution of the CS, site X
sends Release messages to unlock sites whose identifiers
are in RX . Upon receiving a Relinquish message or a Re-
lease message, site S grants its permission to the site P
whose request has the highest priority in QS . Moreover,
site S sends a Failed message to every site in (NextQS 2
hPj) to avoid deadlock [5]. In the case that a Relinquish
message from site Y is received, site S adds site Y’s request
to QS .

Maekawa’s algorithm is prone to deadlock because a
site is exclusively locked by one requesting site at a time,
and requests can arrive in any order. (Note that site X is
locked by site Y if site X grants permission to site Y.) A
possible deadlock occurs in the case when site X’s request
arrives at site Y (Y [RX) and site X’s request has a priority
higher than site Y’s current locking site Z’s request. In this
case, site Y will send an Inquire message to the current
locking site Z and waits for a Release or a Relinquish
message. (Note that site Z will yield the permission if
site Z has received any Failed message.) Consequently,
deadlock is resolved by requiring a site to yield if the
timestamp of its request is larger (i.e., younger) than the
timestamp of any other request. When no deadlock occurs,
K Request-Reply-Release messages are needed. When a
deadlock occurs, extra messages (Failed, Inquire, and Re-
linquish) are needed to resolve the deadlock. This algo-
rithm requires O(ÏN) messages per CS execution because
the size of a request set is ÏN. The performance study of
Maekawa’s algorithm will be discussed in Section 5.2, since
we will compare it with Chang et al.’s hybrid algorithm
[4]. A generalized Maekawa-type algorithm with several

FIG. 2. Comparison of algorithms based on the Ricart–Agrawala-type approach: (a) message traffic; (b) time delay.

means that requesting sites in the same group as the site
finishing execution of CS have a higher priority in getting
global permission than requesting sites in other groups. The
requesting group semantics means that the same reply mes-
sages (granted or rejected) are sent to all requesting sites in
the same group (assuming that all requesting sites in the
same group have the same priority). A hybrid mutual exclu-
sion algorithm using the release local sites first mode, the
requesting group semantics, and the requesting sequence in
which local competition is followed by global competition
has been found to be an efficient way to control the interac-
tion. Since the global permission can be used for the succes-
sive execution of CS in the same group before it is released
to other groups, message traffic and time delay can be re-
duced at the same time. Chang et al.’s hybrid algorithm uses
Singhal’s algorithm [23] as the local algorithm and Maeka-
wa’s algorithm [13] as the global algorithm under the above
combination of these design issues.

In order to avoid starvation resulting from too many suc-
cessive executions of CS in the same group, a local counter
LCS at site S keeps track of the number of successive execu-
tions of CS in its group. LCS is set to 0 initially and is in-
creased by 1 when site S finishes execution of the CS. This
value is passed around in a local Reply message and is used
as a flag: (1) the condition (LCS mod M) ? 0, where M is
the upper bound of successive executions of CS in the same
group, indicates implicitglobalpermission; (2) thecondition
(LCS mod M) 5 0 indicates the absence of implicit global
permission. When site S releases global permission, LCS is
increased by t such that ((LCS 1 t) mod M) 5 0, 0 # t ,
M. A site is granted all global permission when any of the
following two cases satisfies: (1) when the requesting site S
has received a global Reply message from every site whose
identifies is in GS ; (2) when the requesting site S receives a
local Reply message which denotes implicit global per-
mission.

5.2. A Comparison of Performance

We first discuss the performance of Maekawa’s algo-
rithm as shown in Fig. 3. In light traffic, Maekawa’s algo-
rithm needs 12 messages (i.e., 3 p (K 2 1), where N 5
K p (K 2 1) 1 1), N 5 21 and K 5 5). That is, one Request
message, one Reply message and one Release message
are exchanged between a requesting site X and each of
members in its request set RX . As the traffic is increased,
many conflicting requests can occur; the algorithm uses
Inquire and Relinguish messages to resolve possible dead-
lock. Therefore, as the traffic is increased, the number of
messages exchanged is increased. While in heavy traffic,
since the logical clock at each site will be updated fre-
quently and quickly, requests with a higher priority arrive
before requests with a lower priority at a site most of the
time. Therefore, many Failed messages respond to the
incoming requests. This algorithm requires 16 messages
(i.e., 4 p (K 2 1)) in heavy traffic. Moreover, as the traffic
is increased, longer time delay is needed for a site to enter

variants of initialization of request sets has been discussed
by Sanders [21].

5. AN ALGORITHM BASED ON THE
HYBRID APPROACH

Although several distributed mutual exclusion algo-
rithms have been proposed to minimize either message
traffic or time delay, none of them can minimize both at
the same time. Most algorithms have reduced message
traffic by increasing time delay. For example, Maekawa’s
algorithm [13] reduces message traffic to O(ÏN); however,
it has longer time delay in successive executions of CS
as compared to Ricart–Agrawala’s algorithm [19] (whose
message traffic is O(N)). To minimize both message traffic
and time delay at the same time, we look for a hybrid
approach to mutual exclusion in which two algorithms are
combined such that one minimizes message traffic and the
other minimizes time delay. In this section, we discuss
Chang et al.’s hybrid algorithm [4].

5.1. Chang et al.’s Hybrid Algorithm

In Chang et al.’s hybrid approach [4], sits are divided
into groups, and different algorithms are used to resolve
local (intragroup) and global (intergroup) conflicts. That
is, sites use one local algorithm to resolve conflicts with
sites in the same group and use a different global algorithm
to resolve conflicts with sites in other groups. A request
set RS consists of two sets: a local set LS and a global set
GS . A local set LS is used to enforce mutual exclusion
locally (i.e., within the group) and a global set GS is used to
enforce mutual exclusion globally (i.e., among the groups).
The choice of LS and GS must satisfy the following condi-
tions: (1) LS > LY ? B , ; S, Y [GroupK ; (2) LS >
LY 5 B, ; S [GroupK , ; Y [GroupP, (K ? P); (3)
GS 5 GY, ; S, Y [GroupK ; (4) GS > GY ? B, ;
S [GroupK , ; Y [GroupP , (K ? P).

To satisfy conditions (1) and (2), the local sets in each
GroupK of uGroupKu sites are initialized according to the lo-
cal algorithm. To satisfy conditions (3) and (4), sites in the
a local representative set are determined first. A local repre-
sentative set (LRS) of GroupK is a subset of sites in GroupK .
These are the sites which grant global permission to sites in
other groups as far as GroupK is concerned. After sites in
LRSK have been determined in each GroupK , the global set
GS at site S can be determined. Note that as far as a global
algorithm is concerned, it treats each group as a site and the
LRS acts as the site identifier for a group. The global set GS

contains a subset of LRSj’s, 1 # j # g , and the number of
LRS’s in each GS is determined according to the global algo-
rithm.

Several design issues must be addressed to control inter-
action between the local and global algorithms. The design
issues includes modes of release, semantics of global mes-
sages and modes of request. The release local sites first mode

112 YE-IN CHANG

the CS. Since a site is exclusively locked by some other
site, a site X sends a Release message to every member
of RX to release the permission after site X exits the CS,
which introduces one more time delay for the next re-
questing site to enter the CS as compared to Fig. 2b.

Next, we make a comparison of Maekawa’s, Singhal’s,
and Chang et al.’s hybrid algorithms [13, 23, 4]. In this
simulation, we consider two different combinations of g
and M when N 5 21: Hybrid-g7-M3 and Hybrid-g3-M7,
where g is the number of groups and M is the upper bound
of successive executions of CS in the same group. For the
case of Hybrid-g7-M3, it means that 21 sites are divided
into 7 groups. Since when g 5 7, there are three sites per
group; that is why we let M # 3. In a similar way, when
g 5 3, we let M # 7. Figures 3a and 3b show the message
traffic and time delay as a function of the arrival rate,
respectively. When g 5 7 and M 5 3, message traffic in
Chang et al.’s hybrid algorithm can be reduced up to 56%
as compared to Maekawa’s algorithm, and has much less
message traffic than Singhal’s algorithm. This reduction is
resulted from the successive executions of CS in the same
group. When g 5 7 and M 5 3, time delay in Change et al.’s
hybrid algorithm can be reduced up to 25% as compared to
Maekawa’s algorithm. The reason for this reduction is that
the hybrid algorithm uses Singhal’s algorithm within a
group to reduce the long time delay.

One interesting observation is that the number of mes-
sages exchanged in the hybrid algorithm is not monoto-
nously increased as the arrival rate is increased. The num-
ber of messages needed in the case of Hybrid-g7-M3 is
decreased from 10.05 to 7 as the arrival rate is increased
from 0.01 to 1, and the number of message needed in the
case of Hybrid-g3-M7 is changed from 11.61 to 9.21 and
then from 9.21 to 12.65 as the arrival rate is increased.
Recall that the number of messages required in Singhal’s
algorithm is between 20 and 40, while it is between 12
and 16 in Maekawa’s algorithm. That is, the range of the

113DISTRIBUTED MUTUAL EXCLUSION

number of messages needed in Singhal’s algorithm is much
larger than that in Maekawa’s algorithm. Moreover, when
g is increased, the hybrid algorithm behaves more like the
global algorithm and inherits the advantages of the global
algorithm (i.e., Maekawa’s algorithm). Therefore, the be-
havior of the case of Hybrid-g7-M3 inherits more proper-
ties from Maekawa’s algorithm. As the arrival rate is in-
creased, many requesting sites in the same group can make
use of the implicit global permission to enter the CS, re-
sulting in reducing the average number of messages ex-
changed. Consequently, the number of messages needed
in the case of Hybrid-g7-M3 is decreased as the arrival
rate is increased. To the contrary, as g is decreased, the
hybrid algorithm behaves more like the local algorithm,
and inherits more characteristics of the local algorithm
(i.e., Singhal’s algorithm). Therefore, the behavior of
the case of Hybrid-g3-M7 inherits more properties from
Singhal’s algorithm. When in the light traffic, the number
of messages needed in Singhal’s algorithm is around 20;
therefore, the number of messages in the case of Hybrid-
g3-M7 is decreased due to the effect of Maekawa’s algo-
rithm and M. However, when in the heavy traffic, the
number of messages in Singhal’s algorithm is increased
largely and quickly from 20 to 40; therefore, the number
of messages in the case of Hybrid-g3-M7 is increased.

Based on the same reason, for the simulation result of
time delay, the behavior of the case of Hybrid-g7-M3 inher-
its more properties from Maekawa’s algorithms while the
behavior of the case of Hybrid-g3-M7 inherits more prop-
erties from Singhal’s algorithm. Therefore, the case of Hy-
brid-g7-M3 takes longer time delay to enter the CS than
the case of Hybrid-g3-M7 in heavy traffic. Both of them
take shorter time delay to enter the CS than Maekawa’s
algorithm and longer time delay to enter the CS than Singh-
al’s algorithm in heavy traffic. While in light traffic, since
a site cannot start to acquire global permission until all
local permission is obtained, the hybrid algorithm takes a

FIG. 3. Comparison among Singhal’s dynamic information structure and Maekawa’s and Chang et al.’s hybrid algorithms: (a) message traffic;
(b) time delay.

of the next site to get the token. However, the use of TQ
is redundant since those waiting requests can be deter-
mined by the relationship between Seq and TSeq arrays,
and the order of the next site to hold the token can be
determined by several arbitration rules [22]. A site I satis-
fying SeqS[I] . TSeq[I] at site S which holds the token,
1 # I # N, implies that site I is waiting to execute the
CS. Ricart and Agrawala’s token-based algorithm uses a
round-robin arbitration rule and also requires 0 or N mes-
sages per CS execution.

6.3. Singhal’s Heuristically Aided Algorithm

Singhal’s heuristically aided algorithm [22] makes use
of state information, which is defined as the set of states
of mutual exclusion processes in the system. A site can
be in the state of ‘‘requesting its CS’’ (denoted as ‘‘R’’),
‘‘executing its CS’’ (denoted as ‘‘E’’), ‘‘not requesting its
CS’’ (denoted as ‘‘N’’), or ‘‘not requesting its CS but hold-
ing the token’’ (denoted as ‘‘H’’). The state of the system
is the set of the states of all the sites. A site maintains an
array SV (called state vector) to store the state of sites of the
system. A TSV array (i.e., token state vector) is included in
the Token message to refresh the information in a site’s
state vector.

In this algorithm, when a site invokes mutual exclusion, it
uses a heuristic to guess from its available state information
what sites of the system are probably holding or are possi-
bly to have the token and sends token request messages
only to those sites rather than to all of the sites. The heuris-
tic is as follows: All the sites for which the state vector SV
entries are ‘‘R’’ (i.e., Requesting the CS) are in the proba-
ble set. (Note that sequence numbers are still used in order
to distinguish old/new messages.)

Initially, every site S sets SVS[I] 5 ‘‘R’’, 1 # I # (S 2
1), SVS[I] 5 ‘‘N’’, S # I # N, and site 1 holds the token
(i.e., SV1[1] 5 ‘‘H’’). The state information will be updated
in the following three cases: (1) When a site completes the
execution of its CS, it updates its state vector and token
vector by using update rules. The update rules essentially
compare the state vector at the site performing updates
with the token vector to determine which one has more
current information about the state of the sites and restore
the out-dated entries of vectors with more current ones.
(2) When a site wants to send the token to one of other
requesting sites, it uses arbitration rules to determine which
of many requesting sites should get the token next. At the
same time, the related state information is updated. (3)
When a site receives Request messages, its request message
handler will update its state vector. The number of the
messages, exchanged per CS execution in this algorithm
is also between 0 and N, and the average number of the
messages exchanged in light traffic is (N 1 1)/2.

6.4. A Comparison of Performance

Obviously, Suzuki and Kasami’s algorithm and Ricart
and Agrawala’s token-based algorithm will have the same

little bit longer time delay to enter the CS than Maekawa’s
and Singhal’s algorithms.

6. ALGORITHMS BASED ON THE
BROADCAST-BASED APPROACH

In algorithms based on the broadcast-based approach,
the network is logically fully connected and requests are
sent out to other sites in parallel. In this section, we discuss
three algorithms based on the broadcast-based approach
[20, 22, 25]. Some of these algorithms include a queue in
the Token message to store those waiting requests [25],
while some of them do not include a queue in the Token
message [20, 22]. Some of them send requests to sites whose
identifiers are in a static request set [20, 25], while some
of them send requests to sites whose identifiers are in a
dynamic request [22].

6.1. Suzuki and Kasami’s Algorithm

In Suzuki and Kasami’s algorithm [25], a requesting site
sends Request messages to all other sites. To detect an
out-of-date request message, a SeqS array (with N entries)
at each site S and a TSeq array (with N entries) in the
Token message are required. SeqS[I] at site S, 1 # I # N,
records the number of CS requests made by site I as far as
site S knows; TSeq[I] records the number of CS executions
finished by site I. When a site S invokes mutual exclusion,
it increases its sequence number, SeqS[S], by one and in-
cludes this sequence number in each Request message.
Upon receiving site S’s Request(SN 5 SeqS[S], S) message,
a site Y can tell whether this request is out-of-date
by testing the following conditions (1) if SN . SeqY[S],
this is a new Request message, and site Y then updates
SeqY[S] 5 SN (5 SeqS[S]); (2) otherwise, this is an old
Request message, and site Y should ignore it.

A queue TQ included in the Token message contains
the waiting requests. After finishing execution of the CS,
site Z checks any new waiting requests by testing the
following conditions, 1 # I # N: (1) if SeqZ[I] # TSeq[I],
the value of SeqZ[I] is out-of-date; (2) if SeqZ[I] . TSeq[I]
(i.e., SeqZ[I] 5 TSeq[I] 1 1), site I has finished the
(TSeq[I])th CS execution and is requesting the (SeqZ[I])th
(5 SeqI[I]) CS execution. These new waiting requests I
are then added to TQ provided these requests are not
already in TQ. Site Z then sends the Token(TQ, TSeq)
message to the site whose identifier is the first entry of TQ.
The algorithm requires 0 or N messages per CS execution.
Nishio et al. [15] have proposed techniques to make Suzuki
and Kasami’s algorithm fault-tolerant to a site failure and
token loss.

6.2. Ricart and Agrawala’s Token-Based Algorithm

Ricart and Agrawala’s token-based algorithm [20] does
not include the queue TQ in the Token message as opposed
to Suzuki and Kasami’s algorithm [25]. The queue TQ
used in Suzuki and Kasmmi’s algorithm is used to record
those waiting requests and it simplifies the determination

114 YE-IN CHANG

performance; therefore, we only do the simulation study
of Suzuki and Kasami’s algorithm [25] and Singhal’s algo-
rithm [22]. Figure 4a shows a comparison of message traffic
between these two algorithms [22, 25]. In light traffic, Sin-
ghal’s algorithm needs about 54% p N messages per CS
execution. As the traffic is increased, the number of the
sites possibly holding the token is increased in Singhal’s
algorithm. In heavy traffic, both algorithms need N mes-
sages. Moreover, both algorithms have similar time delay
as shown in Fig. 4b.

7. AN ALGORITHM BASED ON THE STATIC LOGICAL-
STRUCTURE-BASED APPROACH

In token-based algorithms based onthe static logical-
structure-based approach, sites are organized in a special
configuration (e.g., tree). Requests must be sequentially
propagated through the paths between the requesting site
and the site holding the token, and so does the token.
Moreover, the direction of edges is dynamically updated
such that it always leads to the site holding the token and
no cycle exists in the configuration. In this section, we
discuss Raymond’s algorithm [16].

7.1. Raymond’s Algorithm

In Raymond’s algorithm [16], the network topology is a
tree, and the root holds the token. Every site communicates
only with its neighboring sites and holds information only
about its neighbors. At every site S, a variable HolderS

records the identifier of its neighbor on the path leading
to the site holding the token, and a local FIFO (first-in-
first-out) queue, QS , records the identifiers of its requesting
neighbors. (Note that when HolderS 5 S, site S holds
the token.)

When a site S which does not hold the token invokes
mutual exclusion, it first adds its request to the end of QS

115DISTRIBUTED MUTUAL EXCLUSION

and then sends a Request message to HolderS (provided
it has not sent out a Request message for a waiting request
in QS). When a site Y which does not hold the token
receives a Request message from one of its neighbors, it
first adds the identifier of this neighbor to the end of QY

and then sends a Request message to HolderY (provided
it has not sent out a Request message for a waiting request
in QY).

A sequence of Request messages is sent between the
requesting site and the site holding the token (along the
path constructed by Holder’s) until a Request message
arrives at the site holding the token. Then, the token is
passed along the same path in the reverse direction. As
the token passes by, the direction of the edges traveled by
the token is reversed such that every path always leads to
the site holding the token. When site X receives the token,
it sends the token to the site whose identifier is the first
entry of QX , which is either itself or one of its requesting
neighbors Y, and removes this request from QX . In the
case where the first waiting request is not site X itself and
QX ? B, site X will send another Request message to its
requesting neighbor Y to ask for the return of the token.
Raymond’s algorithm requires O(log N) messages per
CS execution.

7.2. The Performance of Raymond’s Algorithm

In this simulation, we consider three special cases of a
tree structure: a straight line, a star, and a radiating star.
(Note that a radiating star is a tree in which the degree of
each nonleaf node is the same.) From Fig. 5a, we observe
that among these three tree topologies, a straight line has
the largest number of messages exchanged and a star has
the smallest number of messages exchanged in light traffic.
This can be explained as follows. Since messages are sent
along the path constructed by Holder’s and the topology
constructed by Holder’s is a tree, the number of messages
exchanged in light traffic is proportional to the number of

FIG. 4. Comparison of algorithms based on the broadcast-based approach: (a) message traffic; (b) time delay.

8.1. Trehel and Naimi’s Algorithm

In Trehel and Naimi’s algorithm [26], two special vari-
ables are used at each at each site S: LastS and NextS .
LastS concerns about where site S sends Request messages;
NextS indicates the next site to enter the CS. A site S
satisfying LastS 5 S (the root) implies that site S is the last
site to get the token among the current requesting sites
when no message is in transit; moreover, it holds the token
if no site is requesting. The queue is distributed in the
algorithm; i.e., every requesting site S only records the
identifier of the requesting site next to it to get the token
in a variable NextS . If site S is not requesting, NextS 5 0.
On the other hand, every requesting site S except the last
site in the distributed queue will have NextS ? 0.

When a site Y invokes mutual exclusion, it sends a Re-
quest(Y) message to the site possibly holding the token
(i.e., LastY). Upon receiving the Request(Y) message, a
site X then forwards this Request(Y) message to LastX in
the following cases: (1) site X is not requesting and it does
not hold the token; (2) site X is requesting and its queue
is not empty. Otherwise, site X records NextX 5 Y. After
that, site X updates LastX 5 Y since site Y will have the
token in the near future. Finally, the Request(Y) message
will be forwarded to the root in finite time and site Y then
becomes the new root.

Due to the distributed queue data structure, the Token
message does not have to contain the queue as in [22, 25];
therefore, this algorithm also simplifies the data structure
in the Token message. This algorithm requires O(log N)
messages per CS execution; however, a request can be
forwarded up to (N 2 1) sites in the worst case.

8.2. Trehel and Naimi’s Improved Algorithm

In Trehel and Naimi’s improved algorithm [14], at every
site S, instead of a variable NextS , a local queue QS is used
to store the waiting requests. When a site S is requesting
or executing the CS, it adds all incoming requests to QS

hops in the longest path of the tree. Moreover, since the
number of hops in the longest path of an arbitrary, tree is
proportional to O(log N) in average, the number of mes-
sages exchanged in light traffic is also proportional to O(log
N) in average. From Fig. 5b, we observe that a straight
line has the largest time delay and a star has the shortest
time delay in light traffic. This can be explained by the
same reason as explained above. This algorithm needs
longer time delay as compared to algorithms studied in
Fig. 4b, because messages are propagated serially.

As the arrive rate is increased, the average number of
messages exchanged per CS execution is decreased in
heavy traffic. This message reduction is due to the following
reasons: (1) Only one Request message is sent out for
more than one incoming request, which can be controlled
by testing the size of Q. (2) When a requesting site S
receives the token from its neighbor Y, its other neighbors
whose requests arrive before site Y’s request can use the
token before the token is returned to site Y.

8. ALGORITHMS BASED ON THE DYNAMIC
LOGICAL-STRUCTURE-BASED APPROACH

In algorithms based on the dynamic logical-structure-
based approach, the network is logically fully connected
and a dynamic logical tree is maintained such that the root
is always the site which will hold the token in the near
future. That is, the root is the last site to get the token
among the current requesting sites when no message is in
transit. A request is sequentially forwarded along a path
(in the logical tree) to the root; however, the token is
directly sent to the next requesting site to excute the CS.
In this section, we first discuss two algorithms based on
the request forwarding approach [14, 26]. Next, we discuss
Helary et al.’s general scheme for token- and tree-based
distributed mutual exclusion algorithms [11], which covers
those algorithms [14, 16, 26] based on the static and dy-
namic logical-structure-based approaches.

116 YE-IN CHANG

FIG. 5. Performance of Raymond’s algorithm with three different topologies: (a) message traffic; (b) time delay.

(instead of forwarding these requests to LastS immedi-
ately). After finishing execution of the CS, site S sets LastS

to the identifier of the last entry in QS and includes QS in
the Token message. A site Y receiving the Token(QS)
message adds the entries in QS to the front of QY . This
algorithm requires O(log N) messages with a smaller multi-
plying constant per CS execution as compared to their
original algorithm presented in Section 8.1. However, the
size of the queue in the Token message and at each site
can be as big as (N 2 1). A distributed queue data structure
may be degenerated to a single queue in the worst case.

8.3. Helary et al.’s General Scheme

Helary et al. has proposed a general information struc-
ture and the associated generic algorithm for token- and
tree-based distributed mutual exclusion algorithms [11].
Their information structure contains a dynamic rooted tree
structure logically connecting the sites involved in the sys-
tem, and a behavior attribute (transit or proxy) dynamically
assigned to each site. A variable FatherS indicates, ac-
cording to current site S’s knowledge, the site through
which the token can be reached, which is the same as the
variable Holder in Raymond’s algorithm and the variable
Last in Trehel and Naimi’s algorithms. All Father variables
are set in such a way they define a rooted tree stricture
over the sites with the token located at the root. When a
site Y invokes mutual exclusion, it sends a Request(Y)
message to FatherY and sets a variable MandatorY 5 Y to
record that it is the one really asking for the token. Upon
receiving a Request(Y) message, site X can react to this
message with for requesting the token either for itself or
others, it adds incoming requests to its local queue.)

The transit behavior means that site X which does not
hold the token will forward only the message Request(Y)
to FatherX . If site X with a transit behavior is the token
owner, site X will send a Token(Nil) message to site Y,
where the Nil information in the Token message implies
that it is not necessary to return the token back to the
original token holder. In both cases, site X then sets Fa-
therX 5 Y. That is, upon receiving a request message, a
transit site behaves like the way in Trehel and Naimi’s
algorithm [26].

The proxy behavior means that site X which does not
hold the token considers Y as its mandator (by setting
MandatorX 5 Y) and requests the token (to FatherX) for
itself. That is, upon receiving a request message, a proxy
site which does not hold the token behaves like the way in
Raymond’s algorithm [16]. If site X with a proxy behavior is
the token owner, it will send a Token(X) message to site
Y, where the site identifier X in the Token message implies
that the token must be returned back to site X. The variable
FatherX is not changed at a site with the proxy behavior.
(Note that in Raymond’s algorithm, a token owner does
not ask for the return of the token if its waiting queue is
empty. Moreover, in Raymond’s algorithm, a site reverses
the direction of an incoming edge where the request passes
by to an outgoing edge, when the token is sent out.)

117DISTRIBUTED MUTUAL EXCLUSION

Upon receiving a Token(Z) or Token(Nil) message from
site K, where Z is a site identifier which is called the token
lender, site X takes different actions in the following three
cases: (1) MandatorX 5 nil; (2) MandatorX 5 X; (3) Manda-
torX ? X.

(1) MandatorX 5 nil: In this case, site X does not ask
for the token for itself or its neighbors. Site X just keeps
the token. (2) MandatorX 5 X: In this case, site X is the
one really asking for the token. If a Token(Z) message is
received, site X sets LenderX 5 Z to record that site Z is
the token lender and FatherX 5 K. In this way, when site
X exits the CS, it will send the token back to LenderX (i.e.,
site Z) directly. If a Token(Nil) message is received, site
X sets LenderX 5 X and FatherX 5 nil. In this way, site
X keeps the token after it exits the CS. Finally, site X
updates MandatorX 5 nil. (3) MandatorX ? X: In this
case, if a Token(Z) message is received, site X will send
a Token(Z) message to MandatorX and sets FatherX 5
K. If a Token(Nil) message is received, site X takes two
different actions according to its behavior: (i) Site X with
a proxy behavior sets LenderX 5 X, FatherX 5 nil, and
then sends a Token(X) message to MandatorX . In this
way, site X will get the token back in the future. (ii) Site
X with a transit behavior sets LenderX 5 nil, FatherX 5
MandatorX , and then sends a Token(Nil) message to Man-
datorX . Finally, site X updates MandatorX 5 nil.

In Helary et al.’s general algorithm, when every site has
a transit behavior, the resulting algorithm is a variant of
Trehel and Naimi’s improved algorithm [14]. In the re-
sulting algorithm, for each request in a waiting queue, a
site X forwards the request to FatherX and then updates
the variable FatherX , instead of sending the whole waiting
queue to the next token-holder in [14], when site X is
not requesting the token. On the other hand, when the
behavior of every site is proxy when it has the token and
transit otherwise, the resulting algorithm is the same as
Raymond’s algorithm. (Note that when every site has a
proxy behavior, the resulting algorithm is a centralized
algorithm, in which the direction of paths constructed by
Father’s will not be changed and the token will always
be sent back to the root when a site exits the CS.) The
performance of Helary et al.’s algorithm really depends on
the given topology and every site’s behavior.

8.4. A Comparison of Performance

We first discuss the performance of Trehel and Naimi’s
algorithms [14, 26] and Helary et al.’s algorithm with every
site a transit behavior (denoted as Helary-transit) as shown
in Fig. 6, where we consider a star topology initially. In
light traffic, these three algorithms have a similar number
of the messages exchanged that are smaller than four mes-
sages. In heavy traffic, the number of messages exchanged
is reduced to 2 in Trehel and Naimi’s improved algorithm
and 2.5 in the Helary-transit algorithm. The reason is that
the performance in light traffic is proportional to the num-
ber of the hops in the longest path constructed by Last’s
plus one Token message. While in heavy traffic, since every

pending on how up-to-date information about LastS at a
site S is maintained, these three algorithms have different
performance results in heavy traffic. Moreover, these three
algorithms have similar time delay.

site will keep updating the latest information about the
site possibly holding the token, which implies that the
height of the tree is reduced, the average number of the
messages exchanged per CS execution is reduced. De-

118 YE-IN CHANG

FIG. 6. Comparison of algorithms based on the dynamic logical-structure-based approach: (a) average message traffic; (b) time delay.

FIG. 7. Tree structure: (a) a radiating star (before); (b) a radiating star (after); (c) a line (after); (d) a star (after).

Next, we discuss the simulation result of Helary et al.’s
algorithm as shown in Figure 6, where we consider three
tree structures: a line, a star and a radiating star, which
are denoted as Helary-line, Helary-star, and Helary-R-star,
respectively. Moreover, initially, we assume that site 1
holds the token, a site will have a small identifier as it is
near the root (site 1), a site with an odd number of site
identifier has a transit behavior, and a site with an even
number of site identifier has a proxy behavior. Figure 7a
shows the radiating star structure initially, and Figs. 7b,
7c, and 7d show the final tree structures for the given
radiating star, line and star, respectively, when 5000 CS
executions have been finished and no message is in transit.
It is interesting to see that for sites with an even number
of site identifiers, they always keep the relative position
once requests along the path between them occur. Those
final tree structures shown in Figs. 7b–7d explain why Hel-
ary-star needs the largest number of messages and Helary-
R-star needs the smallest number of messages among these
three topologies in heavy traffic, which also explain the
case of time delay. In general, the performance of Helary
et al.’s algorithm really depends on the given topology and
every site’s behavior.

9. A COMPARATIVE ANALYSIS

In this section, we present a comparative analysis of
these algorithms based on the performance. In general,
these algorithms with different approaches have their own
merits and limitations as shown in Table I. The control

119DISTRIBUTED MUTUAL EXCLUSION

and data structures in algorithms based on the Ricart–
Agrawala-type are more fully distributed and symmetric
than the algorithms based on any other approach.
However, algorithms based on the Ricart–Agrawala-type
usually require more messages. Algorithms based on the
Maekawa-type require O(ÏN) messages on average, but
they have long time delay. Algorithms based on the hybrid
approach are a compromise between algorithms based on
the Ricart–Agrawala-type and Maekawa-type approaches:
Chang et al.’s hybrid algorithm has shorter time delay than
algorithms based on the Maekawa-type approach, and re-
quires fewer messages than algorithms based on the
Ricart–Agrawala-type approach. Moreover, due to succes-
sive executions of CS in the same group, Chang et al.’s
hybrid algorithm also requires fewer messages than algo-
rithms based on the Maekawa-type approach.

Algorithms based on the broadcast-based approach re-
quire 0 or N messages per CS execution and have simple
control and data structures. However, they suffer the prob-
lem of heavy traffic congestion in the token site. Algo-
rithms based on the static logical-structure-based approach
require O(log N) messages in light traffic and the number
of the messages exchanged can be reduced to four messages
in heavy traffic. However, algorithms based on the static
logical-structure-based approach may have long time delay
since messages are propagated serially. Algorithms based
on the dynamic logical-structure-based approach also re-
quire O(log N) messages in light traffic and the number
of the messages exchanged can be reduced to two messages
in heavy traffic. Algorithms based on the dynamic logical-

TABLE I

Messages Messagesa Time delaya

Class Approach Algorithm (analysis) (N 5 21) (s) Note

Non-token-based Ricart–Agrawala type S Ricart et al.’s non- 2(N 2 1) 40 0.2 .. 1.2 Are most fully distributed
token-based (Section and symmetric and have
3.2) a higher degree of fault

D Singhal’s dynamic infor- 0 .. 2(N 2 1) 20 .. 40 0.2 .. 1.3 tolerance, but need a
mation structure (N 2 1) in large number of messages
(Section 3.4) Lb

Maekawa type Maelawa (section 4) 3(K 2 1) .. 12 .. 16 0.2 .. 2 Needs fewer messages but
5(K 2 1) longer time delay

N 5 K(K 2
1) 1 1

Hybrid Chang et al.’s hybrid 0.44*4(K 2 7 .. 10 0.2 .. 1.5 As M increases, number of
(Section 5.1) 1) g 5 7, M 5 3 messages decreases

N 5 K(K 2
1) 1 1

Token-based Broadcast-based S Suzuki et al. (Section 0 or N 20 .. 21 0.1 .. 1.2 Have simple control and
6.1) data structures but poor

D Singhal’s heuristically 0 .. N 11 .. 21 0.1 .. 1.2 fault tolerance
aided (Section 6.3) (N 1 1)/2 in

Lb

Logical-structure- S Raymond (Section 7.1) O(log N) Line: 4 .. 13.7 Line: 0.7 .. 2.2 Needs longer time delay
based RStar: 4 .. 5.4 RStar: 0.2 .. 2.2 since messages are sent

Star: 3.7 .. 3.8 Star: 0.2 .. 2.2 out serially
D 1. Trehel et al. (Section O(log N) 3.6 0.2 .. 1.2

8.1)
2. Trehel et al.’s im- O(log N) 2 .. 3.6 0.2 .. 1.2 May need a queue with

proved (Section 8.2) 2 in Hb size 5 N
3. Helary et al. (transit O(log N) 2.5 .. 3.6 0.2 .. 1.2

behavior) (Section
8.3)

Note: M, the upper bound of successive execution of CS in the same group; g, the number of groups; S, static; D, dynamic.
a Messages and time delay for simulation results with N 5 21, T 5 0.1, and E 5 0.01.
b L*, light traffic; H, heavy traffic.

quorum-based algorithms is similar to Maekawa’s algo-
rithm. The main difference is the way to construct request
sets, and how those quorum-based algorithms can dynami-
cally reconstruct request sets when site failures occur. In
a real-time distributed system and a system which uses
priorities for scheduling, events for requesting the CS
should be ordered on the basis of priorities of the processes
(as first proposed in Goscinski’s algorithm), rather than
on the basis of the time when these events happened.
However, algorithms mentioned in this paper grant the
permission to enter the CS in a first-come-first-served man-
ner. Goscinski has proposed a priority-based approach in
mutual exclusion in real-time distributed systems [9, 10].
How to modify some of the algorithms mentioned in this
paper for a real-time distributed system has been discussed
in [6, 7]. Therefore, a simulation study of quorum-based
algorithms and algorithms for real-time distributed systems
is the future research direction.

ACKNOWLEDGMENTS

The author is grateful to anonymous referees for their careful reading
and helpful comments.

REFERENCES

1. Agrawal, D., and El Abbadi, A. An efficient and fault-tolerant solu-
tion for distributed mutual exclusion algorithm. ACM Trans. Com-
puter Systems 9, 1 (Feb. 1991), 1–20.

2. Buckley, G., and Siberschatz, A. A failure tolerant centralized mutual
exclusion algorithms. Proc. 1984 International Conference on Distrib-
uted Computing Systems. IEEE Comput. Soc., Austin, TX, 1984,
pp. 347–356.

3. Carvalho, O. S. F., and Roucairol, G. On mutual exclusion in com-
puter networks, technical correspondence. Comm. ACM 26, 2 (Feb.
1983), 146–148.

4. Chang, Y. I., Singhal, M., and Liu, M. T. A hybrid approach to mutual
exclusion for distributed systems. Proc. 1990 Annual International
Computer Software and Application Conference. IEEE Comput. Soc.,
Chicago, IL, 1990, pp. 289–294.

5. Chang, Y. I., and Singhal, M. A correct O(ÏN) distributed mutual
exclusion algorithm. Proc. 1992 ISMM International Conference on
Parallel and Distributed Computing and Systems. ISMM, Pittsburgh,
PA, 1992, pp. 56–61.

6. Chang, Y. I. Comments on two algorithms for mutual exclusion in
real-time distributed computer systems. J. Parallel Distrib. Comput.
23, 3 (Dec. 1994), 449–454.

7. Chang, Y. I. Design of mutual exclusion algorithms for real-time
distributed systems. J. Inform. Sci. Engrg. 10, 4 (Dec. 1994), 527–548.

8. Garcia-Molina, H., and Barbara, D. How to assign votes in distributed
systems. J. Assoc. Comput. Mach. 32, 4 (Oct. 1985), 841–860.

9. Goscinski, A. A synchronization algorithm for processes with dy-
namic priorities in computer networks with node failures. Inform.
Process. Lett. 32, 8 (Aug. 1989), 129–136.

10. Goscinski, A. Two algorithms for mutal exclusion in real-time distrib-
uted computer systems. J. Parallel Distrib. Comput. 9, 12 (Dec.
1990), 77–82.

11. Helary, J. M., Mostefaoui, A., and Raynal, M. A general scheme for
token- and tree-based distributed mutual exclusion algorithm. IEEE
Trans. Parallel Distrib. Systems 5, 2 (Nov. 1994), 1185–1196.

12. Lamport, L. Time, clocks and ordering of events in distributed sys-
tems. Comm. ACM 21, 7 (July 1978), 558–565.

structure-based approach use two special data structures
(a dynamic logical tree and a distributed queue) to reduce
messages. Over all, Chang et al.’s hybrid algorithm [4] with
g 5 7 (i.e., the number of groups 5 7) and M 5 3 (i.e.,
the upper bound of successive executions of CS in the
same group 5 3) has the lowest average message traffic
among the non-token-based algorithms. (Note that Chang
et al.’s hybrid algorithm is based on two non-token-based
algorithms.) Trehel and Naimi’s improved O(log N) algo-
rithm [14] has the lowest average message traffic among
the token-based algorithms in a fully connected network.
Almost all of the algorithms have the similar time delay,
except the algorithms based on the Maekawa-type, hybrid,
and static logical-structure-based approaches. In the algo-
rithms based on the Maekawa-type [13, 21] and hybrid
approach [4], a site is exclusively locked by one requesting
site; therefore, one more time delay is needed to release
the lock. In the algorithms based on the static logical-
structure-based approach [16], since sites cannot communi-
cate directly with each other due to the nonfully connected
network topology, longer time delay is needed.

10. CONCLUSIONS

In this paper, we have classified several well-known dis-
tributed mutual exclusion algorithms into two classes: to-
ken-based and non-token-based. Depending on how a re-
quest set is formed, non-token-based algorithms can be
classified into two approaches: the Ricart–Agrawala-type
and the Maekawa-type. Depending on whether or not a
logical configuration is imposed on a site, token-based algo-
rithms can be classified into two approaches: the broadcast-
based and the logical-structure-based. To minimize both
message traffic and time delay at the same time, there is one
more approach to distributed mutual exclusion: a hybrid
approach in which two algorithms are combined such that
one minimizes message traffic and the other minimizes
time delay. Over all, Chang et al.’s hybrid algorithm [4]
has the lowest average message traffic among the non-
token-based algorithms. Trehel and Naimi’s improved
O(log N) algorithm [26] based on the dynamic logical-
structure-based approach has the lowest average message
traffic among the token-based algorithms in a fully con-
nected network. In general, non-token-based algorithms
are more symmetric than token-based algorithms, while
token-based algorithms requires fewer message traffic than
non-token-based algorithms. Depending on different com-
munication topologies, different system requirements (i.e.,
a trade-off between the number of messages exchanged
and time delay) and different system environments (heavy
traffic or light traffic), each algorithm has its merits and
limitations and has been discussed and analyzed in this
paper.

One other class of distributed mutual exclusion algo-
rithms, on which we do not do a simulation study is quo-
rum-based (or voting) [1, 8]. (Note that this approach is
classified as permission-based in [17].) The basic idea in

120 YE-IN CHANG

13. Maekawa, M. A. ÏN algorithm for mutual exclusion in decentralized
systems. ACM Trans. Comput. Systems 3, 2 (May 1985), 145–159.

14. Naimi, M., and Trebel, M. An improvement of the log (N) distributed
algorithm for mutual exclusion. Proc. 1987 International Conference
on Distributed Computing Systems. IEEE Comput. Soc., Columbus,
Ohio, 1987, pp. 371–375.

15. Nishio, S., Li, K. F., and Manning, E. G. A resilient mutual exclusion
algorithm for computer network. IEEE Trans. Parallel Distrib. Sys-
tems 1, 3 (July 1990), 344–355.

16. Raymond, K. A tree-based algorithm for distributed mutual exclu-
sion. ACM Trans. Comput. Systems 7, 1 (Feb. 1989), 61–77.

17. Raynal, M. A simple taxonomy for distributed mutual exclusion algo-
rithms. ACM Oper. System Rev. 23, 2 (Dec. 1991), pp. 47–51.

18. Ricart, G., and Agrawala, A. K. Performance of a distributed network
mutual exclusion algorithm. Technical report TR-774, Dept. of Com-
puter Science. Univ. of Maryland, College Park, MD, Mar. 1979.

19. Ricart, G., and Agrawala, A. K. An optimal algorithm for mutual
exclusion in computer networks. Comm. ACM 24, 1 (Jan. 1981), 9–17.

20. Ricart, G., and Agrawala, A. K. Author’s response to on mutual
exclusion in computer networks, technical correspondence. Comm.
ACM 26, 2 (Feb. 1983), 146–148.

21. Sanders, B. A. The information structure of distributed mutual exclu-
sion algorithms. ACM Trans. Comput. Systems 5, 3 (Aug. 1987),
284–299.

121DISTRIBUTED MUTUAL EXCLUSION

22. Singhal, M. A heuristically-aided algorithm for mutual exclusion in
distributed systems. IEEE Trans. Comput. 38, 5 (May 1989), 651–662.

23. Singhal, M. A dynamic information structure mutual exclusion algo-
rithm for distributed systems. IEEE Trans. Parallel Distrib. Systems
3, 1 (Jan. 1992), 121–125.

24. Singhal, M. A taxonomy of distributed mutual exclusion. J. Parallel
Distrib. Comput. 18, 12 (Dec. 1993), 94–101.

25. Suzuki, I., and Kasami, T. A distributed mutual exclusion algorithm.
ACM Trans. Comput. Systems 3, 4 (Nov. 1985), 344–349.

26. Trehel, M., and Naimi, M. A distributed algorithm for mutual exclu-
sion based on data structures and fault tolerance. Proc. 1987 Phoenix
Conference on Computer and Communications. IEEE Comput. Soc.
Phoenix, AZ, 1987, pp. 35–39.

YE-IN CHANG was born in Taipei, Taiwan in 1964. She received
the B.S. degree in computer science and information engineering from
National Taiwan University, Taipei, Taiwan in 1986 and the M.S. and
Ph.D. degrees in computer and information science from The Ohio State
University, Columbus, Ohio, in 1987 and 1991, respectively. She joined the
Department of Applied Mathematics, National Sun Yat-Sen University,
Kaohsiung, Taiwan in 1991, where she is now an associate professor. Her
research interests include database systems, distributed systems, knowl-
edge-based systems, and computer networks.

Received June 10, 1992; revised May 4, 1995; accepted July 28, 1995

